数据分析的两个主要就业方向,一个是统计学方向,一个是运筹学方向,我们分别来看看这两者具体有哪些相应的岗位
统计学方向
这个方向的职位其实一直都有,只是说现在用的一些方法,技术手段得到了一定的提升。原来公司只有一些有限的经营数据或市场数据,基本上用eXcl就能解决了,现在我们有了很大的数据量,也有了更多的高级的分析软件,比如SAS、R等等。用这些软件,我们可以在大的数据中,挖掘出一些核心的数据信息,来钱出商业活动的驱动力。
从就业方向来说,最典型的是以互联网公司为代表的信息化程度比较高的企业。这些公司在日常业务中会产生大星的数据,数据分析人员必须从繁杂的数据中挖掘出有效信息,来给运营和决策提供支持。其中一些相关的团队包括产品的运营团队、广告效果分析团队、游戏的用户数据处理团队等等。其他还有一些互联网公司,比如美团、携程、饿了么等等。
在这些互联网公司里面,数据粉析工作主要分两个方向:
运营分析,产品开发的分析
除了互联网公司以外,咨询公司也非常注重数据这块的工作。
运筹学的方向
运筹学方向的工作呢,主要是解决一些优化的问题,可能学过相关知识的同学会比较清楚。除了我们最简单的线性规以外,也衍生了很多其他的优化方案,比如动态优化、随机优化、排队等等。就是说你在有限的约束条件下,能够得到一个最优或者局部最优的解。
这些方案在实际应用中也非常广泛。比我们生活中用到的嘀商打车里面的路线规划的这类问题。这是个动态优化的问题,比如你拼车有多少个乘客,怎么给司机安排最优线路,保证能捞上所有乘客的同时,整个运行的路线最短最快捷。那在运筹学的方向,主要的就业公司还是咨询公司。对于咨询公司来讲,它会给客户提供优化方案。比如在制造企业里面,怎么去提升你的性产线的效率,这是一个排产的问题。你要先生产什么,再生产什么,能达到你总的用工时间较短,或者说中间产生比较少的堆积情况。这也是比较偏重运营分析,给运营工作提供一些决策支持相关的工作。